(O5-C3-O8). Dans ces octaèdres, les distances $\mathrm{Ti}-\mathrm{O}$ varie de $1,724(6)$ à $2,164(8) \AA$, les angles $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ (trans) sont compris entre 163,0 (3) et $176,4(3)^{\circ}$ et les angles $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ (cis) entre 77,6 (2) et $104,9(3)^{\circ}$. Ces valeurs indiquent une certaine distorsion des octaèdres.
Les trois atomes de titane indépendants sont différenciés par la nature des groupements environnants: tous les atomes de titane sont liés à un oxygène μ_{3}-oxo et leur coordinance est complétée de la façon suivante: pour Til, trois atomes d'oxygène d'un groupement acétate pontant, un atome d'oxygène d'un groupe isopropoxyde terminal, un atome d'oxygène μ_{2}-oxo pontant; pour Ti2, trois atomes d'oxygène d'acétate pontant, un atome d'oxygène d'un groupe isopropoxyde pontant, un atome
d'oxygène μ_{2}-oxo pontant; pour Ti3 deux atomes d'oxygène d'un groupement acétate pontant, deux atomes d'oxygène de groupes isopropoxyde terminaux et un atome d'oxygène d'un groupe isopropoxyde pontant.

Cette structure est renforcée par l'existence de ponts acétate reliant entre eux les six atomes de titane. Les motifs d' hexamère sont indépendants les uns des autres.

Références

Doeuff, S. (1988). Thèse de Doctorat, Univ. Paris VI, France. Sheldrick, G. M. (1976). SHELX76. Programme pour la détermination des structures cristallines. Univ. de Cambridge, Angleterre.

Structure of (Nonacarbonyl- $1 \kappa^{4} C, 2 \kappa^{3} C, 3 \kappa^{2} C$)-μ-(hydrido-2:3 $\kappa^{2} H$)- μ-(methoxymethylidyne-2:3 $\kappa^{2} C$)-(triphenylphosphine- $3 \kappa P$)-triangulo-triruthenium($3 \mathrm{Ru}-\mathrm{Ru}$)

By John Evans,* Phlip M. Stroud and Michael Webster
Department of Chemistry, The University, Southampton, SO9 5NH, England

(Received 19 January 1990; accepted 3 April 1990)

Abstract

Ru}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right\}\right], \quad M_{r}=\) 861.5, monoclinic, $C 2 / c, \quad a=21.793$ (3), $\quad b=$ 15.945 (2), $\quad c=18.648$ (4) $\AA, \quad \beta=99.45$ (2) ${ }^{\circ}, \quad V=$ $6392.0 \AA^{3}, \quad Z=8, \quad D_{x}=1.790 \mathrm{~g} \mathrm{~cm}^{-3}, \quad D_{m}=$ $1.78(1) \mathrm{g} \mathrm{cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $14.4 \mathrm{~cm}^{-1}, F(000)=3360$, room temperature, $R=$ 0.035 for 3780 unique observed reflections [$F>$ $3 \sigma(F)]$. The three $\mathrm{Ru}-\mathrm{Ru}$ distances are very similar (av. $2.833 \AA$) with the hydride and COMe groups bridging a common $\mathrm{Ru}-\mathrm{Ru}$ distance. One of the Ru atoms involved in the bridge is coordinated by the $\mathrm{Ph}_{3} \mathrm{P}$ ligand $[\mathrm{P}-\mathrm{Ru} 2 \cdot 320$ (1) \AA] which occupies an equatorial site with respect to the Ru_{3} triangle. The solution ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data are discussed.

Introduction. In the course of the synthesis of a series of ruthenium-rhodium heteronuclear clusters, two minor by-products were identified in the synthesis of $\left[\mathrm{Ru}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{COMe}\right)\left\{\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right\}\right]$ from the reaction of $\mathrm{K}\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{COMe}\right)\right]$ and $\left[\mathrm{Rh}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ (Evans, Stroud \& Webster, 1989). These were $\left[\mathrm{Ru}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{COMe})\right]$ (I)

[^0]and $\left[\mathrm{Ru}_{3} \mathrm{H}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}(\mu-\mathrm{COMe})\right]$. The variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of (I) showed the existence of two isomers. A crystal structure determination of (I) was undertaken both to identify the likely major isomer of (I) and also to investigate the structural distortions that the substitution of PPh_{3} into $\left[\mathrm{Ru}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mu\right.$-COMe)] (II) (Johnson, Lewis, Orpen, Raithby \& Süss, 1979) might induce into the cluster cage and the methoxymethylidyne bridging ligand.

Experimental. The title compound was isolated as a minor product (5%) of the reaction between equimolar amounts of $\mathrm{K}\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{COMe}\right)\right]$ and $\left[\mathrm{Rh}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ in methanol. The compound was purified by column chromatography [silica, 4:1 v / v petroleum ether (313-333 K)- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$] (Stroud, 1989). Calc. for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{O}_{10} \mathrm{PRu}_{3}$: C $40 \cdot 4, \mathrm{H} 2 \cdot 2$. Found: C $40 \cdot 4, \mathrm{H} 2 \cdot 1 \%$. FAB mass spectrum showed M^{+}and loss of eight CO groups.

Air-stable yellow plate-like crystals were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane solution and mounted in thinwall glass capillaries. Preliminary photographic X-ray examination established the crystal system and (c) 1990 International Union of Crystallography
cell dimensions, and the density was measured by flotation ($\mathrm{CCl}_{4} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$). Accurate cell dimensions were obtained from 25 centred reflections ($12.4<\theta$ $<13.5^{\circ}$) using an Enraf-Nonius CAD-4 diffractometer fitted with a graphite monochromator and Mo radiation. The intensities of 6131 reflections were recorded ($\omega-2 \theta$ scan, $1 \cdot 5<\theta<25^{\circ} ; h-25$ to $25 ; k 0$ to 19 ; $l 0$ to 22) using a crystal of dimensions $0.5 \times$ $0.25 \times 0.1 \mathrm{~mm}$. The standard reflections (2) showed no change with time during the experiment and an empirical ψ-scan absorption correction was applied to the data (transmission factors min. 77.6, max. 99.9%). After the data reduction, there remained 5600 unique reflections ($R_{\text {int }}=0 \cdot 008$) and 3780 with $F>3 \sigma(F)$ were used in the analysis. The normalized structure factors (E 's) favoured the centrosymmetric space group $C 2 / c$ and the subsequent analysis confirmed this. The Ru atoms were located using the direct-methods strategy (EEES) available in SHELX76 (Sheldrick, 1976) and subsequent structure-factor and electron-density syntheses located the remaining non- H atoms of the cluster. The later electron-density maps gave evidence for the phenyl H atoms and these were introduced in geometrically calculated positions $[d(\mathrm{C}-\mathrm{H})=0.95 \AA]$ with a common refined temperature factor. The difference electron-density map (at $R=0.037$) provided convincing evidence for a hydride atom. Thus it appeared as the highest peak in the map $\left(0.68 \mathrm{e} \AA^{-3}\right)$, in a plausible position, and with other smaller peaks close to the heavy-atom framework. Blocked full-matrix least-squares refinement minimizing $\sum w(\Delta F)^{2}$ converged to $R=0 \cdot 035\{392$ parameters (in 2 blocks), 3780 reflections, anisotropic ($\mathrm{Ru}, \mathrm{P}, \mathrm{O}, \mathrm{C}$) and isotropic (H) atoms, $w=1 /\left[\sigma^{2}(F)+\right.$ $\left.0.0001 F^{2}\right]$, $\max \Delta / \sigma=0.03, w R=0.032, S=1.46$, with all unique data $R=0.079, w R=0.034\}$. The residual electron density was in the range 0.6 to $-0.4 \mathrm{e} \AA^{-3}$. Scattering factors for neutral atoms and anomalous-dispersion corrections were taken from SHELX76 (Sheldrick, 1976) and International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99-101) (Ru only). All calculations were carried out using SHELX76 (Sheldrick, 1976) and ORTEPII (Johnson, 1976) on an IBM 3090 computer. The final atomic coordinates are given in Table 1 and selected molecular geometry presented in Table 2.*

Discussion. The structure of the discrete molecule of (I) is shown in Fig. 1. The three metal atoms define

[^1]Table 1. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

U_{cq} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{Ru}(1)$	$0 \cdot 39670$ (2)	0.01027 (3)	0.14614 (3)	$45 \cdot 0$ (2)
$\mathrm{Ru}(2)$	$0 \cdot 32878$ (2)	-0.06971 (3)	0.02206 (2)	$42 \cdot 6$ (2)
$\mathrm{Ru}(3)$	0.26653 (2)	0.03462 (2)	0.10978 (2)	37.4 (2)
$\mathrm{P}(1)$	0.16072 (6)	0.02759 (8)	0.06570 (7)	36.5 (6)
C(1)	0.4776 (3)	-0.0374 (4)	0.1470 (3)	57.8 (34)
O(1)	0.5249 (2)	-0.0665 (3)	0.1507 (3)	86.1 (31)
C(2)	0.4006 (3)	0.0727 (4)	0.2335 (4)	76.4 (44)
O(2)	0.4022 (3)	0.1070 (4)	0.2875 (3)	127.7 (46)
C(3)	0.3697 (3)	-0.0876 (4)	0.1928 (4)	$61.7(38)$
$\mathrm{O}^{\text {(3) }}$	0.3569 (2)	-0.1441 (3)	0.2238 (3)	90.6 (34)
C(4)	0.4143 (3)	0.1100 (4)	0.0932 (4)	63.0 (37)
$\mathrm{O}(4)$	0.4263 (2)	0.1706 (3)	0.0665 (3)	99.7 (38)
C(5)	0.4015 (3)	-0.0657 (4)	-0.0202 (3)	57.4 (35)
O(5)	0.4466 (2)	-0.0677 (3)	-0.0441 (3)	87.0 (32)
C (6)	0.3479 (3)	-0.1847 (4)	0.0576 (4)	68.3(42)
${ }^{\text {O}}$ (6)	0.3583 (3)	-0.2508 (3)	0.0760 (4)	121.0 (45)
C(7)	0.2738 (3)	-0.1005 (4)	-0.0637 (4)	64.5 (38)
O (7)	0.2435 (2)	-0.1194 (4)	-0.1170 (3)	103.4 (38)
C (8)	0.2535 (3)	-0.0039 (4)	0.2049 (3)	59.4 (36)
O (8)	0.2479 (2)	-0.0260 (4)	0.2615 (3)	$102 \cdot 2$ (38)
C(9)	0.2656 (2)	0.1493 (4)	0.1317 (3)	58.0 (36)
${ }^{\mathrm{O}}$ (9)	0.2659 (2)	0.2193 (3)	0.1431 (3)	108.9 (39)
$\mathrm{C}(10)$	0.3033 (2)	0.0506 (3)	0.0207 (3)	40.6 (27)
O(10)	0.3050 (2)	0.1162 (2)	-0.0214 (2)	52.5 (22)
$\mathrm{C}(11)$	0.3361 (3)	0.1117 (4)	-0.0858 (3)	70.8 (41)
C(21)	0.1135 (2)	0.1099 (3)	0.0972 (3)	40.4 (27)
C(22)	0.0675 (2)	0.1524 (3)	0.0513 (3)	57.4 (34)
C(23)	0.0295 (3)	0.2096 (4)	0.0799 (4)	71.2 (43)
C(24)	0.0373 (3)	0.2248 (4)	0.1528 (4)	71.3 (45)
C(25)	0.0832 (3)	$0 \cdot 1839$ (4)	0.1990 (4)	69.3 (42)
C(26)	0.1217 (3)	0.1274 (3)	0.1720 (3)	51.3(32)
$\mathrm{C}(31)$	0.1386 (2)	0.0305 (3)	-0.0324 (3)	40.2 (26)
C(32)	$0 \cdot 1580$ (2)	0.0975 (3)	-0.0709 (3)	51.0 (32)
C(33)	0.1424 (3)	0.1006 (4)	-0.1456 (3)	64.8 (40)
C(34)	0.1075 (3)	0.0390 (5)	-0.1828 (3)	69.1 (41)
C(35)	0.0877 (3)	-0.0267 (4)	-0.1462 (3)	67.8 (39)
C(36)	$0 \cdot 1027$ (2)	-0.0321 (4)	-0.0709 (3)	53.6 (33)
C(41)	0.1217 (2)	-0.0663 (3)	0.0929 (3)	39.0 (27)
C(42)	0.1531 (3)	-0.1418 (3)	0.1047 (4)	72.9 (42)
C(43)	0.1238 (3)	-0.2116 (4)	0.1264 (5)	88.6 (48)
$\mathrm{C}(44)$	0.0636 (3)	-0.2088 (4)	0.1260 (4)	69.0 (41)
C(45)	0.0321 (3)	-0.1350 (4)	0.1254 (3)	58.2 (36)
C(46)	0.0606 (2)	-0.0644 (3)	0.1037 (3)	48.6 (30)
H(1)	0.2693 (23)	-0.072 (32)	0.0854 (29)	$80.0{ }^{*}$

an approximately equilateral triangle, in which one edge is bridged by the H atom and the quaternary C atom of the COMe ligand, such that they subtend interplanar angles with the Ru_{3} plane of 114 (3) and $94 \cdot 1$ (2) ${ }^{\circ}$, respectively. The Ru-C(carbyne) distances $[\mathrm{Ru}(2)-\mathrm{C}(10) \quad 1.996(5), \quad \mathrm{Ru}(3)-\mathrm{C}(10)$ 1.976 (5) $\AA]$ and the near planarity of the $\mathrm{Ru}(2)$, $\mathrm{Ru}(3)$, (COC) unit $[\mathrm{Ru}(x)-\mathrm{C}(10)-\mathrm{O}(10)-\mathrm{C}(11)$ torsion angles: $\left.x=2,-4.7^{\circ} ; x=3,180.0^{\circ}\right]$ are normal for an edge-bridging methoxymethylidyne ligand [the equivalent angles in (II) are $6 \cdot 3$ and $174 \cdot 9^{\circ}$]. Compared to (II) the PPh_{3} ligand can be seen to have been substituted on one of the bridged metal atoms $[\mathrm{Ru}(3)]$ in an equatorial site. The methyl group of the alkylidyne ligand is orientated away from the sterically demanding PPh_{3} group, and the bond lengths and angles $[\mathrm{C}(10)-\mathrm{O}(10) 1.312(6)$,
$\mathrm{O}(10)-\mathrm{C}(11) 1.475(8) \AA$ and $\mathrm{C}(10)-\mathrm{O}(10)-\mathrm{C}(11)$ 120.7 (4) ${ }^{\circ}$] are similar to those observed for (II) [1.299 (8), 1.427 (9) \AA and $120 \cdot 3(6)^{\circ}$, respectively].
The carbonyl groups show a variation in $\mathrm{Ru}-\mathrm{C}$ distance such that the ones transoid to the hydride are the shortest set (mean $1.88 \AA$), and those transoid to the carbyne the longest (mean $1.96 \AA$). This indicates a strong trans influence by the alkylidyne bridge.

Comparison with the structure of the parent complex (II) (Johnson, Lewis, Orpen, Raithby \& Süss,

Fig. 1. View of the discrete molecule showing the atom-numbering scheme. The atom surfaces are drawn at the 25% probability level and phenyl H atoms are omitted for clarity.

Fig. 2. Partial ${ }^{1} \mathrm{H}$ NMR spectra of (I) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution (89.55 MHz), showing the CH_{3} and $\mathrm{Ru}-\underline{\mathrm{H}}$ peaks of the major (a) and minor (b) isomers.

Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2 \cdot 836$ (1)	$\mathrm{Ru}(2)-\mathrm{C}(10)$	1.996 (5)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	2.831 (1)	$\mathrm{Ru}(3)-\mathrm{C}(10)$	1.976 (5)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)$	2.833 (1)	$\mathrm{C}(10)-\mathrm{O}(10)$	1.312 (6)
$\mathrm{P}(1)-\mathrm{Ru}(3)$	$2 \cdot 320$ (1)	$\mathrm{O}(10)-\mathrm{C}(11)$	1.475 (8)
$\mathrm{P}(1)-\mathrm{C}(21)$	1.824 (5)	$\mathrm{Ru}(2)-\mathrm{H}(1)$	1.89 (6)
$\mathrm{P}(1)-\mathrm{C}(31)$	1.814 (5)	$\mathrm{Ru}(3)-\mathrm{H}(1)$	1.77 (5)
$\mathrm{P}(1)-\mathrm{C}(41)$	1.834 (5)	C-H (fixed)	0.95
$\mathrm{Ru}-\mathrm{C} \quad$ min.	1.875 (6)	max. 1.971 (6) mean	1.92 (3)
$\mathrm{C}-\mathrm{O}$ (carbonyl) min.	$1 \cdot 120$ (8)	max. 1-145 (8) mean	$1 \cdot 134$ (8)
$\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ min.	175.4 (6)	max. 178.2 (6)	
$\mathrm{C}-\mathrm{C}$ (phenyl) min.	1.353 (9)	max. 1-404 (8) mean	1.38 (1)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	60.0 (1)	$\mathrm{P}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	167.4 (1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	$60 \cdot 1$ (1)	$\mathrm{P}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	108.0 (1)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	59.9 (1)	$\mathrm{Ru}(2)-\mathrm{H}(1)-\mathrm{Ru}(3)$	101 (3)
$\mathrm{Ru}(3)-\mathrm{P}(1)-\mathrm{C}(21)$	115.6 (2)	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	$103 \cdot 7$ (2)
$\mathrm{Ru}(3)-\mathrm{P}(1)-\mathrm{C}(31)$	$116 \cdot 1$ (2)	$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{C}(41)$	103.9 (2)
$\mathrm{Ru}(3)-\mathrm{P}(1)-\mathrm{C}(41)$	114.9 (1)	$\mathrm{C}(41)-\mathrm{P}(1)-\mathrm{C}(21)$	$100 \cdot 8$ (2)
$\mathrm{C}(10)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$44 \cdot 3$ (2)	$\mathrm{Ru}(2)-\mathrm{C}(10)-\mathrm{Ru}(3)$	$90 \cdot 9$ (2)
$\mathrm{C}(10)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	44.8 (1)	$\mathrm{Ru}(2)-\mathrm{C}(10)-\mathrm{O}(10)$	137.6 (4)
$\mathrm{C}(10)-\mathrm{O}(10)-\mathrm{C}(11)$	120.7 (4)	$\mathrm{Ru}(3)-\mathrm{C}(10)-\mathrm{O}(10)$	131.4 (4)
$\mathrm{C}(10)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	71.6 (1)	$\mathrm{C}(10)-\mathrm{Ru}(3)-\mathrm{C}(8)$	$161.7(2)$
$\mathrm{C}(10)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	71.9 (1)	$\mathrm{C}(10)-\mathrm{Ru}(3)-\mathrm{C}(9)$	94.5 (2)
$\mathrm{C}(10)-\mathrm{Ru}(2)-\mathrm{C}(5)$	$102 \cdot 3$ (2)	$\mathrm{C}(10)-\mathrm{Ru}(3)-\mathrm{P}(1)$	$103 \cdot 0$ (1)
$\mathrm{C}(10)-\mathrm{Ru}(2)-\mathrm{C}(6)$	$160 \cdot 3$ (3)		
$\mathrm{C}(10)-\mathrm{Ru}(2)-\mathrm{C}(7)$	$95 \cdot 9$ (2)		

1979) indicates that the equatorial PPh_{3} ligand has effected the following structural changes:
(a) the $\mathrm{Ru}-\mathrm{Ru}$ bond distances have been slightly lengthened [mean $\mathrm{Ru}-\mathrm{Ru} 2.833 \AA$ in (I) and $2.811 \AA$ in (II)].
(b) the $\mathrm{O}-\mathrm{C}(\mathrm{Me})$ distance has been lengthened $[1.475$ (8) \AA in (I), 1.427 (9) \AA in (II)].
The ${ }^{1} \mathrm{H}$ NMR spectra of (I) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution over the temperature range $213-310 \mathrm{~K}$ are shown in Fig. 2. At the lowest temperature, two isomers can be identified by their CH_{3} and $\mathrm{Ru}-\underline{\mathrm{H}}$ resonances. The major isomer (a) exhibits its CH_{3} proton resonance at $\delta 4.02$, which is significantly closer to that reported for (II) ($\delta 4 \cdot 46$). This indeed suggests that the methyl group is oriented towards the unsubstituted end of the bridged bond in that isomer.
At 213 K the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of (I) contains two resonances at $\delta 41 \cdot 1$, [isomer (a)] and $39 \cdot 4$ [isomer (b)] relative to $85 \% \quad \mathrm{H}_{3} \mathrm{PO}_{4}$. Further indication of two such isomers is provided by their ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra obtained at 233 K in CDCl_{3} (Ph resonances omitted):

	Isomer (a)	Isomer (b)
$\mathrm{C}-\mathrm{OMe}$	$372 \cdot 1(s)$	$369 \cdot 2(s)$
$\mathrm{C}-\mathrm{O}$	$207 \cdot 0[d, \mathrm{~J}(\mathrm{PC}) 8,1 \mathrm{C}]$	$206 \cdot 6[d, \mathrm{~J}(\mathrm{PC}) 8,1 \mathrm{C}]$
	$205 \cdot(s, 1 \mathrm{C})$	$205 \cdot 2(s, 1 \mathrm{C})$
	$204 \cdot 6(s, 1 \mathrm{C})$	$204 \cdot 3(s, 1 \mathrm{C})$
	$200 \cdot 6(s, 1 \mathrm{C})$	$200 \cdot 1(s, 1 \mathrm{C})$
	$200 \cdot 0[d, \mathrm{~J}(\mathrm{PC}) 8,1 \mathrm{C}]$	$201 \cdot 3(d, \mathrm{JPC}) 8,1 \mathrm{C}]$
	$196 \cdot 8(s, 2 \mathrm{C})$	$197 \cdot 4(s, 1 \mathrm{C})$
		$195 \cdot 4(s, 1 \mathrm{C})$
	$188 \cdot 3(s, 1 \mathrm{C})$	$195 \cdot 7(s, 1 \mathrm{C})$
	$74 \cdot 0(s)$	$188 \cdot 8(s, 1 \mathrm{C})$
CH_{3}	$72 \cdot 3(s)$	

The close similarity of these data suggest that the isomers are based on a common coordination
arrangement with the absence of any molecular symmetry. Clearly at 233 K the exchange rate is sufficiently rapid that line broadening is evident in the ' H NMR spectrum (Fig. 2). The ratio of the major (a) to minor (b) isomers varies with temperature (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from 6.2:1 at 183 K through 5•4:1 at 213 K to $4 \cdot 7: 1$ at 233 K). This allows estimates of ΔH and ΔS for the (a) to (b) equilibrium of $2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively, to be made in that solvent. The small entropy value would be expected for such a process, and the enthalpy difference favours the sterically more favoured form.

We thank Professor M. B. Hursthouse for collecting the X-ray data on the SERC/QMC diffrac-
tometer, the SERC (PMS) for financial support, and the Johnson Matthey Research Centre for the loan of ruthenium salts.

References

Evans, J., Stroud, P. M. \& Webster, M. (1989). J. Chem. Soc. Chem. Commun. pp. 1029-1031.
Johnson, B. F. G., Lewis, J., Orpen, A. G., Raithby, P. R. \& Süss, G. (1979). J. Organomet. Chem. 173, 187-197.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stroud, P. M. (1989). PhD Thesis, Univ. of Southampton, England.

Acta Cryst. (1990). C46, 2337-2339

(η^{5}-Methylcyclopentadienyl)($N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine)lithium*

By A. Hammel, W. Schwarz and J. Weidlein
Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80, Federal Republic of Germany

(Received 13 February 1990; accepted 20 March 1990)

Abstract

Li}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right], M_{r}=202 \cdot 27\), orthorhombic, $P b c a, a=11 \cdot 238$ (2), $b=16 \cdot 014$ (3), $c=$ $14.522(3) \AA, \quad V=2613 \cdot 5(8) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.028 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{K})=0.71069 \AA, \quad \mu=$ $0.549 \mathrm{~cm}^{-1}, \quad F(000)=896, \quad T \simeq 173 \mathrm{~K}, \quad R=0.042$ [1845 data, $I>2 \sigma(I)$]. The structure consists of discrete ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}$) Li.tmen units (tmen = $N, N, N,{ }^{\prime} N^{\prime}$-tetramethylethylenediamine). The Li atom is coordinated by the methylcyclopentadienyl ring and the two N atoms of the chelating tmen ligand. The average $\mathrm{Li}-\mathrm{C}$ distance is $2.258 \AA$; the $\mathrm{Li}-\mathrm{N}$ distances are $2 \cdot 130$ (3) and $2 \cdot 124$ (3) \AA.

Introduction. Molecular structures of several silylated cyclopentadienyl lithium derivatives have been reported in the literature. They all show the Li atom nearly symmetrically sited above the ring and coordinated by one additional mono- or bidentate Lewis base.

The distance between the Li atom and the ring plane $(=Z)$ varies from $1.794 \AA$ in $\left\{\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3-}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{2}\right\}$ Li.quinuclidine (Jutzi, Schlüter, Pohl \& Saak, 1985) to $1 \cdot 980 \AA$ in $\left\{\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right\}$ Li.tmen (Jutzi, Schlüter, Pohl \& Saak, 1985). For coordination

[^2]0108-2701/90/122337-03\$03.00
number $\mathrm{CN}=4$ (the cyclopentadienyl ring is regarded as a tridentate ligand) as obtained for $\left\{\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right\}$ Li.quinuclidine (Jutzi, Schlüter, Pohl \& Saak, 1985) and $\left\{\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right\} \mathrm{Li}$.THF (Jutzi, Leffers, Pohl \& Saak, 1989), Li- Z is found to be 1.794 and $1.803 \AA$, respectively. In the fivecoordinated species such as $\left\{\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{C}_{5} \mathrm{H}_{4}\right\} \mathrm{Li}$.tmen (Lappert, Singh, Engelhardt \& White, 1984), $\left\{\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right\}$ Li.tmen (Jutzi, Schlüter, Pohl \& Saak, 1985) and $\left\{\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right\}$ Li.pmdeta (pmdeta $=$ pentamethyldiethylenetriamine) (Jutzi, Schlüter, Krüger \& Pohl, 1983) values of 1.928 and $1.980 \AA$ indicate that the increase in the $\mathrm{Li}-Z$ distance is not only due to the higher coordination number, five, but also to steric repulsions between the bulky $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ groups and the bidentate base. In order to reveal the parameters that determine the $\mathrm{Li}-Z$ distance we report here the structure of (methylcyclopentadienyl)(tetramethylethylendiamine)lithium, a compound without interligand repulsions.

Experimental. The title compound was prepared from freshly cracked methylcyclopentadiene and n-butyllithium in hexane/tetrahydrofuran (1/3) followed by crystallization from $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine. Crystals were separated © 1990 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, calculated H -atom positions and complete geometric details have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53160 (26 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Coordination Geometry in Cyclopentadienyl Complexes. IV. Part III: Hammel \& Weidlein (1990).

